EE834 ## Eighth Semester B.E. Degree Examination, Dec. 07 / Jan. 08 **HVDC Power Transmission** | | HVDC Power Trans | mission | |-------|--|--| | | HARRI | Max. Marks:100 | | Time: | | estions. | | ь | Compare AC and DC transmission in terms of reliability. Explain the applications and limitations of HVDC to Explain the various kinds of DC links used for HV. | DC power transmission. (04 Marks) | | 2 a | Explain the various kinds of DC links used for TV. Perform the analysis of 3-phase, 6 pulse, convert Draw the relevant waveforms and derive the exp (V_{do}) in terms of RMS line-to-line voltage (E₁ overlap on the average DC voltage. A DC link has a loop resistance of 10 Ω and is co voltage of 120 kV at each end. The bridge connect Rectifier: α = 15° and X_C = 15 Ω Inverter: β = 10°, γ = 15° and X_C = 15 Ω Calculate the direct current delivered if the inverter. | oression for ideal no load direct voltage L). Explain the effect of commutation (10 Marks) nnected to transformers giving secondary ted converters operate as follows: | | 3 | c. Show that transformer utilization factor of a Covalves q involved in each commutation group. Covalvia the basic principles of DC link control. | (04 Marks) (10 Marks) (10 marks) | | 4 | a. Explain the basic plane. b. Discuss the complete characteristics of convesignificance of current margin and its values. Ho a. Explain the IPC and EPC firing angle control Mention the merits and drawbacks of each schere. b. Mention the basic functions to be performed by for sizing the reactor. | ol schemes leading to the power control. | | 5 | a. Explain the following converter faults: i) Are back ii) Are through iii) Misf | (10 Marks) | | 6 | b. Discuss the protection against overcurrents in D a. Workout the optimal value of resistance for avoid of DC link. b. Explain the different types of MTDC systems at the proof for a point of DC link. | and compare them. (10 Marks) | | 7 | and converter models used in | vork. (06 Marks) | | 8 | Write explanatory notes on: a. Modern trends in DC transmission b. Starting and stopping of DC link c. Surge arrestors d. DC breaker. | (20 Marks) |